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A B S T R A C T

Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG,
has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved
upon. In general, the main indicator for testing the potency of new candidates in animal models is the
reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is
similar to that induced by BCG, although in some cases a weak but significant improvement can be
detected, but none of candidates are able to prevent establishment of infection. The main characteristics
of several laboratory animals are reviewed, reflecting that none are able to simulate the whole
characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important
to test new candidates in several models in order to generate convincing evidence of efficacy that might
be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo”
models to better understand experimental data and also to try to replace, or at least reduce and refine
experimental models in animals.
© 2017 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Control of tuberculosis (TB) on a global scale requires the urgent
development of a vaccine or vaccines which can be applied both
prophylactically and post-exposure in order to be deployed as a
major preventive intervention. Since 1924 the Bacille of Calmette
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Guerin (BCG) has been available and has been the most widely
distributed vaccine in humankind, administered predominantly in
neonates, mostly after the Second World War. In 1993, the WHO
declared tuberculosis a global emergency1 because of the re-
emergence of the disease, and there was recognition that existing
control measures, including the standard antibiotic regimens and
BCG vaccination were insufficient to overcome factors such as drug
resistance and HIV/AIDs which were driving the TB epidemic.
There was a renewed interest to fully ascertain the protective
efficacy of BCG, which appeared to be not homogeneous among
different populations and to be mainly restricted to preventing
severe forms of the disease in children, with a limited ability to
prevent lung TB.2 Since the 1993 WHO declaration there has been
progress in halting and even reversing the trend for an increase in
cases and deaths, but in order to meet new WHO targets to end TB
by 2035,3 it is absolutely clear that new tools, including vaccines
which are better than BCG, will be needed. In order to achieve
better efficacy than BCG, either the magnitude (strength and
duration) of the BCG-induced immune response could be increased
or a broader or even fundamentally different type of immunity
might be required.

Do we know what protects against TB?

The search for a new vaccine triggered a resurgence in
investigations to identify the immune mechanisms which are
associated with protection. Unfortunately, even though immune
protection appears to be related to the cellular compartment of the
immune response, there is not a clear idea about which particular
parameter is correlated with protection. The key role of interferon
gamma (IFN-g) in the control of TB infection was soon apparent,4

but it subsequently became clear that this was not a single and
sufficient mediator of protection, as demonstrated by studies
which showed that Mycobacterium tuberculosis (Mtb) infection
itself is able to induce as good an IFN-g response and protection as
BCG vaccination5 and the fact that not all vaccines which induce
high IFN-g responses are able to protect against infection. In an
attempt to identify an immune mechanism which could define a
protective response rather than a response to infection itself, there
was a hypothesis that multifunctional T-cells, as demonstrated in
Leishmania infection,6 were associated with protection. This
turned out not to be the case for TB as a prospective BCG trial
showed that these cells are not surrogates of protection.7 This fact
was later confirmed in the phase 2b efficacy trial which evaluated
the boosting of BCG with MVA85A in infants.8 However, recently
published studies evaluating immune correlates associated with
the risk of developing TB disease have identified activated CD4+ T-
cells as being associated with increased risk but reinforced the role
of IFN-g in showing that BCG-specific IFN-g secreting T-cells are
associated with a decreased risk.9

Do we know the Natural History of TB?

To further complicate the issue, even the natural history of the
disease is not clear. There is still not a clear understanding of what
mechanism triggers the evolution from infection to disease. The
clinical pragmatism probably explains why this question has not
had priority for a long time. In particular, strategy against TB has
tried to classify persons into three general groups: non-infected,
infected and ill. The classification between infected and ill has had
some benefit in the respect that a precise treatment for both has
been set. Infected persons are those with a tuberculin skin test
(TST) positive and no lesion greater than 10 mm in the chest X ray.
On the contrary, those who were TST positive and with lesions
greater than 10 mm were considered to have TB disease. For the
infected persons 6-9 months of INH treatment can be given; for the
diseased persons, 2 months with INH, RIF, PZA and ETB plus
4 months with INH and RIF. This treatment strategy has been quite
successful for a long time, before the appearance of multidrug
resistance, HIV/AIDs and globalization appeared.10

Now we are “rediscovering” that TB pathology cannot be only
limited to infected or ill people, and that there is an evolution of a
spectrum of lesions.11 In addition, lesions of several ages can be
found in the same host, in concordance with the cellular nature of
the immune response.12 We are also rediscovering that large
lesions and cavitation are related with exudative responses, i.e.
with the neutrophilic attraction to the infectious foci, a fact that is
specially favoured at the upper lobes, as it was largely described in
the pre-antibiotic era.13,14

Therefore, in order to be successful in the discovery and
evaluation of vaccination strategies, it is essential that the most
appropriate experimental systems are used, taking into account
the likely immunological mechanisms which need to be induced
and considering the pathological status of the infected host.

The use of Experimental Modelling for Vaccine discovery

In this scenario, the use of experimental models with
laboratory animals has had a very clear target: to obtain a better
vaccine than BCG. Especially in terms of efficacy, but also in terms
of safety, taking into account comorbidities like AIDs that have
dramatically increased cases of BCGitis, with a high incidence of
fatal outcomes.15,16 It is not expected to be possible to find one
single model which is able to reproduce what is thought to be the
situation in humans, not least because there are multiple facets of
TB disease in human populations. Every animal model gives us
certain information that should be useful for the development of
a new vaccine, but it is essential that we discern between
prophylactic, boosting and therapeutic vaccines, depending on
the particular target population or setting i.e.: in neonates, to
boost neonate vaccination or adolescent memory, and in already
infected subjects.

Murine models

Mice have been the most extensively used animal for vaccine
discovery for several reasons. The most obvious is the economic
one, which leads to the mouse model being the most widely used
and characterised, such that there is a larger body of data available
making it more possible to perform comparisons with humans
because both species have been deeply studied.17–20 In addition,
due to the mice being in-bred, it is more feasible to standardise this
model between laboratories.

The low dose aerosol
“Popularized” by Ian Orme, this mouse model soon appeared

to be a hallmark in the screening of new vaccines.21 The model
was based on the inoculation of about 50 Mtb colony forming
units (CFUs) in the lung through an aerosol with droplets of
about 2 um diameter to reach the alveolar space, usually through
use of a Middlebrook chamber device. Usually, the mouse strain
used is the C57Bl/6, and new vaccine candidates must reduce the
bacillary load in the lung by at least 0.7 log10CFUs compared with
un-vaccinated controls at week 3 post challenge. This is the
protection obtained after BCG vaccination and therefore a novel
vaccine candidate would be expected to reduce this further.

So far, the majority of the vaccines tested have only weakly
increased this protection even if significantly, but none of them
have been able to prevent infection.

From the pathology point of view, this infection is character-
ized by the growth of the bacillary load for the first two weeks, up
to a 1 �105 CFUs in the whole lung without the induction of
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lesions, thus reflecting a “unicellular” phase of the infection.22

Granulomas appear at week 3 post infection, when the bacillary
load is around 1 �107 CFUs. These granulomas are characterized
by a mixture of infected macrophages with rafts of neutrophils.
Infection is controlled afterward and the bacillary load decreases
to 1 �106 CFUs at week 6, and the lesions are characterized by the
presence of necrosis (depending on the Mtb strain used),
epithelioid cells with no presence of acid fast bacilli, surrounded
by a ring of lymphocytes and an outermost ring of foamy
macrophages, some of them infected, reflecting the “escape” of
bacilli from the lesion.23–25 This has been seen with more or less
severity depending on the mouse strain. In particular there is less
severity in C57BL/6 and BALB/c, while it is more important in
DBA/2 and 129/Sv.26 The severity is mainly related to the size of
the lesions, mainly as a consequence of the increased size of the
foamy macrophage ring.

The murine scenario reflects poorly the spectrum seen in
humans as it is characterized by a mixture of controlled lesions,
proliferative ones, without presence of exudative infiltration and
cavitation. The other particularity of the mouse model is that
lesions progress arithmetically,24,25 which could reflect a disease
infiltration in immune-depressed patients. This sort of progression
has been considered as tolerant, as it allows the survival of the host
for a long time, while at the same time allowing a large bacillary
load with a progressive infiltration of the lung, which is what in the
end kills the animal.27

Recently, new prospects for the mouse model have emerged
with the C3HeB/FeJ mouse. It was long described by the Kramnik
team that this mouse strain develops unusually large lesions.28

Subsequently it was shown that the large lesions had liquefaction,
similar to that found in the model of infection reactivation in SCID
mice,29 that was not considered a good “human-like” model to
study the evolution from infection to disease.30 In the C3HeB/FeJ
model the neutrophilic infiltration to enlarge lesions and induce
liquefaction is paramount, as it is in humans,14 and consequently
several groups are starting to use it to evaluate new vaccine
candidates.31,32

In addition to the consideration of mimicking more human-like
pathology, it is important to consider the nature of the natural
challenge. Taking into account the fact that close contacts of an
active TB case are those subjects with higher probability to acquire
TB, and that receive multiple consecutive infections, it seems
logical to explore the influence of new vaccines to control the
infection under these conditions.33

The murine latent TB model
With the aim to explore the usefulness of a therapeutic vaccine

to reduce the chemotherapy treatment of latent tuberculosis
infection (LTBI), a new model was set to address the capacity of
vaccines to destroy dormant bacilli.34 Mice are infected with a low
dose aerosol and infection progress until week 6, when the
antibiotic treatment is started and continued until week 16. At this
time point only persistent bacilli are present in the lesions and this
is when the therapeutic vaccination is tested. Reduction of
bacillary load in the lungs compared to control groups is measured
at week 23. This model is the standard for evaluating therapeutic
vaccines, and has been widely used so far.22,34,35

The intratracheal model
This model is based on the inoculation of a large dose of Mtb

intratracheally (1 �106) in BALB/c mice causing an aspirating
pneumonia. Even though this does not appear to follow the natural
history of Mtb infection, it has been used to evaluate the capacity of
vaccination to reduce the pathology. This was mainly tested with
M. vaccae, being the basis for considering this vaccine as being
responsible for changing the Th2 response to Th1.36
Guinea Pig

The guinea pig model has been widely used as a diagnostic tool
for detecting Mtb in clinical samples until culture media could
demonstrate similar sensitivity. It is usually described as a
susceptible model but, unless very high challenge doses are used,
infected animals remain clinically well for many weeks post-
challenge � a facet which makes this model difficult to use for
studies where survival is the main read-out.39 The main
characteristic of this model is the extreme reaction against the
bacilli, which has a very important parallelism with the exudative
lesions of humans although curiously, this exudative response is
very much dominated by eosinophils.37 In this model secondary
lesions occur as a consequence of blood dissemination38 and a
notable feature is the major destruction of pulmonary lymph
nodes.39 The progressive pathology leads to severe disease in the
animals, from around 10 weeks post infection (depending on
infection dose), as a result of excessive inflammatory response
against Mtb.27 The parallels with human TB features which are
found in the guinea pig model have led to it being the most
commonly used system to further evaluate vaccine candidates
which have performed well in the initial screening in mice.40 In
this model BCG vaccination shows a relatively strong protection
compared to that seen in mouse models41 and it can be difficult to
detect a clear effect of vaccine candidates that are better than
BCG.40 Several attempts have been made to simplify the model to
obtain equivalent information, looking to detect differences in CFU
at week 4, or by using a high dose challenge,42 although the latter
results in a rapid disease progression which could potentially
overwhelm vaccine-induced effects.

LTBI model have been also used in the guinea pig, after short
term chemotherapy from week 4 post challenge.39,43

Non-human primate model

The use of non-human primates (NHP) is very attractive
because of the close evolutionary relationship with humans, which
makes the immune response very similar to that of humans,44 and
makes possible the use of human reagents but more importantly
means that immunological analyses performed in NHP can be
directly compared to those generated in clinical studies. This opens
the possibility to perform parallel studies in humans and NHPs
which have the potential to identify immune correlates of
protection or disease, which are then directly applicable to
humans. Overall, the natural history of the infection tends toward
a constant dissemination, and to the presence of exudative lesions
that can evolve to cavitated lesions.45 Very relevant have been the
studies using CT and PET-CT, which allow the evolution of lesions in
different evolutionary phases, which leads to a better understand-
ing of the evolution from infection to disease.43,45

One of the challenges in using NHPs to test new vaccine
candidates for the ability to perform better than BCG is that there
can be variable responses after BCG vaccination, depending on
which macaque species is used.45–47 In one study, where very high
dose challenge was used, BCG showed almost complete protection
in cynomolgus macaques, while rhesus were not protected at all.47

Further light was shed on this by a study which demonstrated that
ultra-low dose aerosol infection of rhesus macaques resulted in a
more progressive disease than the same dose delivered to
cynomolgus macaques, which showed a reduced disease burden.48

Thus, the inherent susceptibility of the macaque species is an
important factor in determining whether protection may be
observed with a vaccine. This diversity in susceptibility can be also
seen in the same species of macaque as shown for cynomolgus
macaques which vary, depending on the particular origin of the
animals.49 There are other important parameters to consider with
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NHP models such as the challenge dose and route. When
evaluating the MVA85A vaccine which was subsequently tested
in a clinical trial,7 Verreck et al. demonstrated that BCG boosting
with MVA85A offered a significant protection50 better than BCG
but this result was not correlated with the clinical trial. Many
different factors could have accounted for this discrepancy, such as
differences in Mtb strains and differences in the environment
between an experimental facility and the real world.

However, none of this diminishes the importance of the NHP
model for demonstrating the safety and efficacy of vaccines before
entering clinical trials, and there are considerable efforts being
made to maximise the value of these precious models by
harmonising methodology and sharing expertise between the
few groups globally who have the capability to perform vaccine
evaluations in NHPs. This is imperative to ensure that only the
vaccines with the greatest potential to protect in humans are taken
forward to clinical trials.

Other small mammals: cotton rat, rat and rabbit

The use of rats as a model for vaccine testing has a quite short
history. First of all, it was claimed that rats tend to control TB
infection to the extent of being able to sterilize the lesions.51 Even
though this aspect has not been reproduced by other groups, it is
apparent that the lesions are better controlled than in mice
(around 1 �104 CFUs in the lungs). The quality of the lesions is
similar to those seen in mice, but with much less foamy
macrophage infiltration, and BCG vaccination offers a relevant
reduction in terms of number of granulomas and bacillary load.52

This is also the case with the cotton rat, which has been shown to
control infection, although this aspect has not been validated.
Cotton rats also develop mouse-like lesions and can be protected
by BCG vaccination.53

The rabbit model has been used for a long time. The major bulk
of the information on this model comes from the laboratory of Max
Lurie and Arthur M. Dannenberg.54 The model was very attractive
because for several years those authors were able to experiment
with two different strains, a susceptible and a resistant one.
Interestingly, the resistant one was able to develop exudative
lesions and cavitation. The conclusion was that cavitation was the
best way to drain bacilli and to protect the host.55 In this context,
the efficacy of vaccines was measured as a decrease in the number
of grossly visible primary tubercles.56 The lack of specific reagents
together with the space demanding conditions has made this
model very marginal in the vaccine development.

Large mammals: goats, cows and pigs

Large mammals, like humans, have an additional protective
mechanism to stop the progression toward active TB. Because of
the size of the lung, and the mechanical needs for the breathing
process, the parenchyma is not homogeneous but organized in a
net of interlobular septae that segments the organ in pieces of
around 1 cubic centimetre. This is to allow the transmission of the
strength elicited by the diaphragm in order to inflate the lung.
Interestingly, these septae are very sensitive to any lesion in the
parenchyma and tend to encapsulate it.14 This was first observed in
the mini-pig model, in which it was not possible to reproduce an
exudative lesion, and thus large lesions, even after locally
inoculating up to 1 �103 bacilli.57 In this model only therapeutic
vaccination has been tested, showing an increase in the maturation
of the lesions, thus limiting the drainage of bacilli from them and
also the reinfection process.57

The use of cows as a model of TB vaccination comes from the
very beginning of TB vaccine development. In fact, BCG vaccine was
tested initially in this model, showing from the very beginning a
partial effectiveness.58 TB infection in cows offers a wide spectrum
of the TB disease, resembling very much what is found in humans,
from controlled lesions, encapsulated and calcified, to exudative
cavitated lesions.59 This is also the case with goat models, where
vaccination has demonstrated a significant reduction on the
lesions’ size, measured through tomography.60 In both cases what
is significant is the difference in terms of virulence demonstrated
after Mtb or M. bovis infection, low and high, respectively. In both
models it is interesting to note that natural infection can be studied
among the herds, which is a very interesting model to test vaccines
in “natural” conditions, although always with the difference to test
natural infection with M. bovis.61

A need for replacement, refinement and reduction. The 3R policy

Recently a very interesting review has been published review-
ing the use of TB models in the context of the 3R policy.62 It is
important to note the remarkable work to develop ex-vivo models
for the detection of bactericidal activity using whole blood63 in
immunized subjects, or by examining the splenocyte bactericidal
activity.64 Another important initiative to be highlighted is the
efforts made with mathematical modelling in order to better
understand the experimental data from both clinical and
experimental modelling resources,65 from the point of view of
understanding the evolution of TB natural history66 or the design
of vaccines.

Conclusions

The discovery of a new TB vaccine able to significantly reduce
the TB disease or infection is one of the major challenges for the
current scientific community. The lack of a validated surrogate of
protection, together with a precise knowledge of the natural
history of the infection and its evolution toward active TB, makes
this goal even more difficult. Current experimental models using
laboratory animals must be correctly interpreted and analysed.
Interestingly, the model that was the most used as a pre-screening,
the murine one, has traditionally used a tolerant strain (the C57BL/
6) that exhibits a limited pathological profile, showing a balanced
immune response that does not correspond with the exaggerated
inflammatory response, mainly exudative, that usually leads to
disease induction in humans. On the contrary, the guinea pig
response is always exaggerated, having a close relation with an
allergy response (considering its eosinophilic infiltration) that
always leads to disease, although BCG vaccination is remarkably
efficacious. The rabbit model also displays “human-like” lesions,
but has been poorly developed for the evaluation of vaccines. In
this regard, the rhesus or cynomolgus models might be the more
attractive models, showing the whole spectrum of human lesions,
and being the closest species to humans and having the
opportunity to conduct parallel human and NHP trials. Addition-
ally, there is also an important opportunity to use developments in
bioimaging that will allow a better understanding of TB natural
history and to monitor the impact of vaccination on disease
progression. There are some limitations to this model such as the
variability observed related to the origin of the animals (although
this can be taken into consideration), the scarcity of expertise and
facilities to conduct these studies, but perhaps of more importance
is the anatomy of the lungs, which due to their small size lack the
interlobular septae that enable an efficacious encapsulation and
control of the pulmonary lesions. In this regard, bigger mammals
used as experimental models do have the interlobular septae net
that allows the encapsulation of small lesions from the very
beginning. Unfortunately, they also have limitations, such as the
remarkable difference in the virulence shown by Mtb and M. bovis
and the potential confusing factor of the complex stomach in the
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ruminant digestive system. Otherwise, both cows and goats show
the whole human TB spectrum, and also can be used in the context
of natural infection. The model in pigs avoids the complexity of the
digestive system, and by using mini-pigs, also avoids the logistic
problem of the size of the animals. However this model has only
been developed in the context of latent tuberculosis infection. All
in all, experimental modelling for TB vaccine discovery and
evaluation has some room for improvement both by refining
existing models in terms of making them more reproducible and
relevant but also by the introduction of new systems, for example
by using the C3HeB/FeJ mouse strain, that develops a complete
human like pathology spectrum, and also the use of mini-pig to
better understanding the protective role of local encapsulation
through the interlobular septae. Additionally, the use of “ex-vivo”
assays to determine the induction of bacillary killing are very
interesting systems which can be used to provide informative
vaccine efficacy data whilst reducing or refining animal use.
Finally, mathematical modelling validated with experimental data
appears to be very relevant for obtaining more value from the
available information and to focus and integrate the wide variety of
results coming from the different experimental models.
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