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S U M M A R Y

Tuberculosis (TB) continues to be a significant cause of mortality and morbidity worldwide. An estimated
2 billion individuals are infected with Mycobacterium tuberculosis and annually there are approximately
10 million new cases of clinical TB and 1.5 million deaths. Currently available drugs and vaccines have had
no significant impact on TB control. In addition, the emergence of drug resistant TB is considered a public
health crisis, with some strains now resistant to all available drugs. Unfortunately, the growing burden of
antibiotic resistance is coupled with decreased effort in the development of new antibiotics. Natural
sources are attractive starting points in the search for anti-tubercular drugs because they are extremely
rich in chemical diversity and have privileged antimicrobial activity. This review will discuss recent
advances in the development of TB drug leads from natural products, with a particular focus on anti-
mycobacterial compounds in late-stage preclinical and clinical development.
© 2016 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Contents

Emergent drug-resistant tuberculosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Natural products as new treatments for TB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Phenazines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Piperidines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Mycins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Quinolones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Antimicrobial peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

AMPs- Inhibition of cell wall biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
AMPs-Inhibition of proteolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
AMPs- Inhibiting DNA replication pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Other AMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Conflict of interest statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

journal homepage: www.elsevier .com/ locate / i j id
Emergent drug-resistant tuberculosis

The spread of drug resistant TB is a major threat to global TB
control. These strains are now entrenched in most countries and
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are spreading at an alarming rate. Multi-drug resistant (MDR) TB
isolates are resistant to isoniazid (INH) and rifampicin, the two
frontline drugs for TB treatment, and have been detected in every
country surveyed. In 2015 there were an estimated 480,000 new
cases of MDR-TB, however only 50% of patients on MDR-TB
treatment were successfully treated.1 This means hundreds of
thousands of people worldwide are going untreated
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and continuing to spread drug resistant forms of the disease.
Extensively drug-resistant (XDR) TB strains, first detected in 2006,
are resistant to front-line and second-line anti-tubercular anti-
biotics. XDR-TB is now present in over 100 countries and
represents approximately 10% of MDR-TB cases.1 Delayed diagnosis
and inappropriate treatment leads to multiplication of resistance;
this is best highlighted by the alarming emergence of totally drug
resistant (TDR) TB, which is essentially untreatable using current
drugs.2 In addition, TB treatment is long; standard treatment for
drug sensitive strains is 6 to 12 months, while patients with drug
resistant TB must endure a longer course of treatment (24 months
or longer) with harsh side effects, high cost and a low chance of
cure. The combination of long treatment and side effects results in
poor compliance, which is a major contributor to the development
of resistance. Thus it is evident that current methods of treatment
and control for TB are not sustainable in the face of highly drug
resistant TB; there is an obvious and urgent need for the
development of new TB drugs that are effective against drug
resistant M. tuberculosis strains, as well as strategies to reduce
duration of treatment regimens.

Natural products as new treatments for TB

The search for new anti-TB agents has been slow; the last major
anti-TB drug to be licensed for human use was rifampicin in 1963.
Since that time a handful of compounds have entered human trials,
and encouragingly two compounds, bedaquiline and delamanid,
have recently received fast-tracked approval for use against MDR-
TB.3 However both drugs are associated with side-effects and are
only recommended for those without other treatment options.
Considering the restrictions on bedaquiline use, and the fact that
XDR and TDR strains cannot be adequately treated with currently
available antibiotics, many more compounds must enter the TB
drug development ‘pipeline’ in order to adequately combat the TB
problem. New anti-TB compounds must overcome the issues with
current treatments (Table 1). The ideal anti-TB drug must display
high potency, particularly against drug-resistant strains, and
possess an adequate safety profile. In addition drugs should be
active against latent and replicating forms of M. tuberculosis and
have limited drug/drug interactions, particularly with anti-
retroviral agents.

In recent years the field of drug discovery has focused on target-
based and genetics-driven approaches to identify new antibiotics.
However, this strategy has not been overly successful, as inhibition
of enzyme activity often does not correlate with killing of whole
bacteria.4 Large high-throughput (HTS) screening programs have
also been employed with a view to rapidly elucidate ‘hit’
molecules. However, these studies have been typically performed
using small molecule ‘corporate’ chemical libraries that are
relatively limited in diversity. Furthermore, antibacterials that
are successful in the clinic do not generally follow Lipinski's ‘rule of
five’ for drug likeness, while most corporate compound collections
are heavily biased towards such compounds.4 A review of HTS
Table 1
Desired properties of new anti-TB drugs.

Problem with existing therapy Desired characteristics of new drugs

Lengthy treatment Increased capacity to inhibit bacterial growth an
High pill burden Lower the number of pills and frequency of doses 

Expensive Cheap to make and easily available to the devel
Side effects Less toxic drugs. Intermittent treatment.
Interaction with other drug Minimal drug-drug interaction with anti-virals, 

Drug resistant M. tuberculosis
strains

Novel drugs with new mechanism of action.

Lack of efficacy against latent TB Active against non-replicating bacteria and wor
campaigns by Novartis revealed that natural products were the
most diverse compound class tested, with significantly higher hit
rates compared to the compounds sourced from synthetic and
combinatorial libraries.5 Indeed, in recent years there has been
renewed interest in the use of natural products, due to the wide
range of pharmacophores and a high degree of stereochemistry,
and therefore three-dimensionality that natural products possess.6

Identification of bioactive molecules from natural sources involves
a defined series of steps to characterize/synthesize the products of
interest (Figure 1). In addition, natural products are often bioactive
molecules that may display high degrees of bioavailability, thus
increasing their capacity to access their site of action within target
cells.

The remainder of this review focuses on recent advances in the
identification of natural products as anti-mycobacterial agents and
potential TB drug leads. We will focus predominately on natural
products, their derivatives and ‘nature-inspired’ compounds that
have entered lead optimization and pre-clinical development
stages, as well as products that have entered clinical trials (Figure
2). We have kept the definition of natural products relatively broad
in order to include the major TB drug candidates in development,
with a focus on 5 major compound classes.

Phenazines

Phenazines are a diverse class of aromatic compounds
produced both synthetically in the dye industry as well as
biosynthetically by many species of the Actinobacteria phylum.7

As biological molecules, phenazines are involved in redox reactions
as well as competitive and symbiotic interactions.8,9 The role of
phenazines as inhibitory molecules translates to broad-spectrum
antibiotic activity against bacteria and fungi. Antifungal phena-
zines were first isolated from Pseudomonas fluorescens10 and since
then, novel phenazines have been synthesised as potential
antitumour drugs11 as well as antibiotics.12 Riminophenazines
are currently under re-investigation as lead compounds for TB
treatment. Historically derived from lichens, riminophenazines
were developed decades ago as potential TB drugs.13 Recent years
have revived interest in this class of compounds due to the
antitubercular activity of clofazimine. Several chemical series of
novel riminophenazine derivatives have been synthesised and
evaluated for lead development, aiming to improve activity and
reduce lipophilicity.14

Clofazimine is a riminophenazine originally discovered in
1954 through structural modifications of diploicin, extracted from
Buellia canescens.15 While development of clofazimine for TB
treatment was delayed by studies showing inactivity in guinea
pig and monkey models,16 it is currently used as a WHO group five
drug for MDR-TB.17 This is due to a reassessment of clofazimine as a
TB drug, which discovered that when used in combination with
gatifloxacin, ethambutol, pyrazinamide, prothionamide, kanamy-
cin and high-dose isoniazid for 9 months, clofazimine was able to
d shorten treatment time (e.g. <4 month).
by using highly potent and bioavailable drugs. Also aim for intermittent treatment.
oping world.

diabetes and non-TB drugs.

k effectively in hypoxic conditions. Drugs that can penetrate granulomas.



Figure 1. Identification of new drugs from natural sources. A. Prominent natural sources of bioactive molecules include Actinomycetes spp, terrestrial plants and marine
species. Sessile organisms produce many secondary metabolites in competition for space and resources which can be exploited for drug development. B. Whole organisms or
components of interest are subjected to sequential fractioning to identify pure, active samples from which the molecule of interest can be identified. C. Bioactive chemical
scaffold are identified which can be subject to structure activity relationship studies in order to identify a functional pharmacophore. D. Modifications around the functional
pharmacophore generate a series of chemical analogues which can be tested for activity and drug-likeness. E. As structure optimisation proceeds, derivative products can lead
to novel chemical classes and several generations of antibiotics.
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treat 88% of MDR-TB patients studied.18 As a result of this research,
investigation of clofazimine’s potential to shorten treatment for
drug-susceptible TB commenced. Results in mouse models of M.
tuberculosis infection indicated greater early bactericidal activity
and earlier lung. culture conversion (3 months compared to
5 months) in clofazimine-containing first-line treatment.19 Clofa-
zimine accumulates within cells20 and tissues to high concen-
trations21, leading to undesirable side-effects which researchers
seek to minimise.

TBI-166 is a preclinical candidate for TB drug development
identifiedfromaseriesofclofazimineanalogues.Initialinvestigation
found TBI-166 to have potent in vitro activity against M. tuberculosis
H37Rvincultureandwithinmacrophageswithlowcytotoxicity.TBI-
166 was effective against drug-resistant clinical isolates of M.
tuberculosisbutnotagainstnon-replicatingM.tuberculosis invitro.At
a dose of 20 mg/kg in M. tuberculosis H37Rv-infected mice, TBI-
166 resulted in greater than one log10 CFU/mL reduction than the
clofazimine control.22 Pharmacokinetic studies in rats and beagle
dogs have also been completed, showing TBI-166 to be stable but
eliminated slowly from the body. 23,24 At this stage it is unclear
whether TBI-166 is able to improve upon clofazimine’s long half-life
and accumulation in body tissues, which leads to one major side-
effect of clofazimine treatment, skin discolouration.
Piperidines

Piperidines are a class of heterocycline amines commonly used
as scaffolds for the synthesis of pharmaceutical compounds. They
are a derivative of piperine, the alkaloid responsible for the heat in
black pepper. When piperine is extracted from pepper fruits and
hydrolysed, piperidine is formed.25,26 Piperidines can also be
extracted from black pepper and have been also found in other
plants.27 This class of molecules includes a wide range of drugs
such as vasodilators, antipsychotics, neuroleptics and opioids. Of
particular interest for the subject of this review are the subclass of
dipiperidines, which have been investigated as potential TB drug
leads as a result of their identification in high-throughput
screening programs.28,29 SQ609 is a preclinical dipiperidine
identified by Sequella from a screening program using a library
of dipiperidines.30 SQ609 is an adamantine-containing hydrox-
ydipiperidine with potent in vitro activity against M. tuberculosis
H37Rv. Testing in mice indicated that SQ609 had prolonged
therapeutic effects and was able to prevent TB-induced weight loss
after treatment ceased. SQ609 is believed to target cell wall
synthesis and has good oral bioavailability.31

BTZ043 is a piperidine-containing benzothiazinone currently
undergoing GLP toxicity testing before entering Phase I trials.
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Discovered through a screen of sulfur-containing heterocycles
against M. smegmatis,M. aurum, M. vaccae and M. fortuitum in
vitro,32 BTZ403 has been found to be active against all tested
clinical isolates of M. tuberculosis including MDR and XDR strains.33

BTZ043 inhibits DprE1, a key enzyme in the arabinogalactan and
arabinomannan synthesis pathway.34 It has been found to work
synergistically with bedaquiline, pretomanid, moxifloxacin, mer-
openem and SQ-109 in vitro to inhibit M. tuberculosis H37Rv.34

PBTZ169 is a derivative of BTZ043 developed by iM4TB and
undergoing Phase I clinical trials in Russia. PBTZ169 interacts with
the same active site residues in DprE1 as BTZ403. However, in
comparison to BTZ403, PBTZ169 has improved potency, safety and
efficacy in mouse models of TB. Combination treatment with
PBTZ169, bedaquiline and pyrazinamide was found to be more
effective than standard isoniazid, rifampicin and pyrazinamide
treatment for two months in mice.32 PBTZ169 has also been found
to work in synergy with clofazimine against replicating and non-
replicating M. tuberculosis H37Rv in vitro, as well as in a mouse
model of chronic TB.35 As such, PBTZ169 is a promising candidate
for novel TB treatment regimes.

Mycins

Throughout history, mycin antibiotics have formed the foun-
dation of treatment for infectious diseases. Largely sourced from
Actinobacteria spp., mycins are produced as secondary metabolites,
which perform many functions in bacteria and fungi, such as
competition, transport and chemical signalling. They fall under
several broad categories including beta-lactams, tetracylines and
aminoglycosides. Since the discovery of streptomycin 70 years ago
as the first drug with proven activity against TB,36 several new-
generation mycin compounds have entered the pipeline for TB
drug development. SQ641 is an analogue of capuramycin, a
nucleoside antibiotic originally sourced from Streptococcus gri-
seus.37 Like capuramycin, SQ641 is a translocase I inhibitor and was
developed as a series of capuramycin derivatives and found to
display activity against drug-susceptible and drug-resistant strains
of M. tuberculosis.38,39 In a mouse model of chronic M. tuberculosis
infection, SQ641 was able to reduce bacterial lung burden by 1.0–
1.5 log10 CFU.40 However, its lipophilicity and low water solubility
has led to studies with delivery vehicles41 as well as further
chemical modifications to improve intracellular activity.42 A
capuramycin analogue, UT-01320, inhibits bacterial RNA polymer-
ases and has been shown to work in synergy with SQ641 to inhibit
M. tuberculosis H37Rv growth to a greater extent than each
molecule alone.43 CPZEN-45 is a caprazamycin derivative that
inhibits WecA, a transferase involved in arabinogalactan biosyn-
thesis44 and has potent activity in vitro against M. tuberculosis
H37Rv but limited activity against gram-positive and negative
strains such as Staphylococcus aureus, Escherichia coli and Klebsiella
pneumoniae.45 CPZEN-45 had no acute cytotoxic effects at
concentrations up to 3 mg/ml and cell permeability assays revealed
good solubility.46 As a lead compound, it is in early-stage
development.

Thiolactomycin is an inhibitor of bacterial fatty acid biosyn-
thesis.47 Originally isolated from a previously unknown Nocardia
spp. in 1982, thiolactomycin is a broad-spectrum antibiotic with
weak toxicity when tested in mice.48,49 Thiolactomycin was
evaluated for anti-mycobacterial activity in the search for new
TB drugs and found to block mycolic acid synthesis along with fatty
acid synthesis through inhibition of FAS-II, but not FAS-I.
Thiolactomycin is also active against a clinical isolate of XDR-TB
but loses efficacy against M. tuberculosis strains with KasA G269S
mutations.50 As a result of these findings, several derivatives of
thiolactomycin have been synthesised and evaluated as lead
candidates for TB drug discovery.51–53

Lipiarmycin A3 was originally discovered as a 3:1 mixture of
lipiarmycin A3 and lipiarmycin A4 isolated from Actinoplanes
deccanensis54 until structure elucidation studies were complet-
ed.55,56 Lipiarmycin A3 is a bacterial RNA polymerase inhibitor also
known as tiacumicin B and fidaxomicin, a drug approved by the
Food and Drug Administration (FDA) in 2011 for treatment of
Clostridium difficile infection.57 To date, rifampicin and lipiarmycin
A3 are the only RNA polymerase inhibitors to gain FDA approval
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and be used clinically. Lipiarmycin A3 is effective against M.
tuberculosis H37Rv in vitro and has potent activity against clinical
isolates of MDR-TB. No cross-resistance with rifampicin is
observed for lipiarmycin A3 as the compound binds to a separate
region of RNA polymerase.58 Issues with developing lipiarmycin
A3 as a TB drug involve the compound’s physical properties such as
a high molecular weight (MW >1000 Da), low solubility in water
and low systemic absorption after oral administration.59 If these
hurdles can be overcome, lipiarmycin A3 has significant potential
as the starting point for a drug candidate.

Rifapentine is a derivative of the rifamycin family, which
includes rifampicin or rifampin, rifabutin and rifalazil. Rifamycin B
was first isolated from Amycolatopsis rifamycinica60 but was poorly
active and thus modified to produce the more effective, but
intravenous rifamycin SV. Extensive structure optimisation then
led to the synthesis of rifampin.61 In attempts to improve upon TB
treatment regimes, rifampin has been subject to many structure-
optimisation studies. In 1965, rifapentine was developed by Sanofi-
aventis and it was approved by the FDA in 1998. Rifapentine has
similar activity to rifampin, but persists in the blood at therapeutic
levels for longer (72 h post-antibiotic effect)62 and is better able to
treat atypical mycobacterial infections such as those arising from
the M. avium complex.63 Rifapentine also better accumulates in
macrophages and thus has more activity against intracellular
bacilli.64 Currently, high-dose rifapentine in combination with
other drugs is undergoing Phase II clinical trials for the treatment
of drug-susceptible TB. Results showed that a 6 month regimen
that included weekly administration of high-dose rifapentine and
moxifloxacin was as effective as the control regimen (2 months
daily isoniazid/rifampin/pyrazinamide/ethambutol (HRZE) fol-
lowed by 4 months daily isoniazid/rifampicin). However, the 4-
month regimen was not noninferior to the control regimen.65

Quinolones

The quinolones are a broad class of compounds, many of which
occur naturally in Pseudomonas spp.66,67, Escherichia spp.68 and
many other bacterial species as cell-signalling molecules.69

Nalidixic acid was the first discovered quinolone and was
originally derived from quinolone itself, a by-product of quinine
distillation.70 Four generations of quinolone antibiotics have since
been developed, including the fluoroquinolones and diarylquino-
lones which are of particular interest to TB drug development,
especially given that molecules in this class are already used in the
clinic as second-line TB drugs. DC-159a is a novel 8-methoxy
fluoroquinolone and a preclinical candidate for Phase I clinical
trials, scheduled to begin in 2011 but currently on hold.71 As a
broad-spectrum antibacterial, DC-159a exhibits activity against
Streptococcus spp., Staphylococcus spp.72 and several other
clinically relevant bacteria,73 as well as having potent activity
against fluoroquinolone-resistant strains of bacteria including M.
tuberculosis H37Rv.74,75 In a mouse model of M. tuberculosis
infection, DC-159a was found to be more effective than moxi-
floxacin at bacterial clearance during initial and extended
treatment. This effectiveness was dose-dependent and the early
bactericidal activity of DC-159a indicated that it may be a
candidate for shortening TB treatment.76

Bedaquiline (marketed as Sirturo) is a novel diarylquinolone
that is the first new TB drug approved for use in over 40 years.
Unlike the fluoroquinolones, bedaquiline is a narrow-spectrum
antibiotic and exhibits little activity beyond the mycobacterial
species. Bedaquiline targets ATP synthase by inhibiting the proton
pumping mechanism77 and has bactericidal effects on both active
and non-replicating bacilli.78 Early clinical trials showed bedaqui-
line to be safe and effective in increasing sputum culture
conversion and reducing the treatment time required for
sputum-negative conversion,79,80 which led to the fast track
approval of the drug by the FDA for use only in cases of MDR-TB.
Bedaquiline has a black-box warning for potential induction of long
QT syndrome, which can lead to abnormal and potentially fatal
heart rhythm. A Phase II 14-day bactericidal activity study of a
bedaquiline/pretomanid/pyrazinamide regimen (BPaZ) in treat-
ment-naive, sputum smear-positive patients with pulmonary TB
showed BPaZ to have the highest activity compared to other
combinations.81 A similar treatment combination of bedaquiline/
pretomanid/linezolid is in advanced Phase II clinical trials to assess
treatment for MDR-TB and XDR-TB (NiX-TB). Current Phase III trials
of bedaquiline in combination therapy include a comparison of a
6 and 9 month bedaquiline-containing regimen against the WHO
and Bangladesh regimen (STREAM Stage 2) and an open label RCT
of a 6-9 month injection free regimen containing bedaquiline,
linezolid, levofloxacin, ethionamide/high dose isoniazid, and
pyrazinamide (NeXT).

Moxifloxacin is a repurposed 8-methoxy fluoroquinolone
currently undergoing Phase III clinical trials as part of combination
therapy. First used as a broad-spectrum antibiotic for the
treatment of various respiratory and enteric infections, moxiflox-
acin exhibits favourable pharmacokinetics82 and penetration
through human peripheral cavities.83 In the search for new TB
treatments amongst novel and existing drugs, moxifloxacin was
found to have activity against M. tuberculosis in mouse84 and
human85 studies. Early clinical trials showed that replacing
isoniazid or ethambutol with moxifloxacin in a standard 4-month
HRZE treatment regimen resulted a shorter time to sputum-
negative conversion but a lower proportion of favourable out-
comes in patients.85Nevertheless, the safety of daily oral moxi-
floxacin over four months was confirmed by this study and the
potential for moxifloxacin to reduce treatment time warrants
further investigation. Incorporating moxifloxacin into standard
treatment regimens with a 4 or 6 month treatment schedule found
that the 6-month treatment was as effective as standard treatment
but the 4 month treatment did not demonstrate noninferiority to
standard treatment.65 Investigation continues as to the feasibility
of reducing treatment time. An ongoing Phase III trial aims to
assess a combination of pretomanid/moxifloxacin/pyrazinamide
(PaMZ) for 4 to 6 months in patients with drug-susceptible TB in
comparison to standard HRZE treatment. The 14-day early
bactericidal activity of PaMZ was comparable with that of HRZE
and higher than bedaquiline treatment, bedaquiline/pyrazinamide
and bedaquiline/pretomanid, but lower than pretomanid/pyrazi-
namide.86 As an oral regimen which can be administered at a fixed
dose, PaMZ has the potential to simplify treatment for drug-
susceptible and MDR-TB.

Levofloxacin is another repurposed fluoroquinolone normally
used in the treatment of sinusitis, bronchitis and urinary tract
infection patients with no alternative treatment options.87

Levofloxacin was found to be active against all tested drug-
resistant strains of M. tuberculosis in vitro and treatment of four
patients with a second-line treatment regime which included
levofloxacin showed that it was well-tolerated and resulted in
clinical improvement.88 As such, further investigation as to the
rate of major adverse events associated with levofloxacin
treatment compared to standard treatment of TB patients was
carried out, with results indicating no significant difference
between the two groups.89 Population pharmacokinetic studies
comparing levofloxacin, gatifloxacin and moxifloxacin found
levofloxacin to have the highest maximum plasma concentra-
tions, largest volume of distribution, and longest elimination half-
life.90 A comparison of moxifloxacin and lexifloxacin for the
treatment of MDR-TB in patients found no significant difference
between sputum culture conversion at 3 months for the two
groups.91
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Antimicrobial peptides

Antimicrobial peptides (AMPs) are a family of polypeptides
produced by living organisms as a host defence mechanism. These
are amphipathic molecules, which inhibit the growth of viruses,
bacteria, fungi and protozoa.92,93 Some AMPs derived from bacteria
are potent against M. tuberculosis and have been well charac-
terised.94 They are still classified within the ‘lead optimization’
phase of anti-TB drug development, but considering their potential
they will be discussed in detail here.

AMPs- Inhibition of cell wall biosynthesis
Teixobactin is a recently discovered AMP, which interferes with

bacterial cell wall synthesis.95 Ling et al. used iChip to isolate and
cultivate previously uncultured soil bacteria and through screen-
ing against Staphylococcus aureus identified teixobactin produced
by Eleftheria terrae as a potent antimicrobial, including activity
against M. tuberculosis H37Rv. The mechanism of action was
identified as inhibition of peptidoglycan synthesis, however
interestingly teixobactin-resistant strains of S. aureus or M.
tuberculosis could not be generated.95 Recently texiobactin has
been synthesised with the synthetic natural product displaying
inhibitory activity against M. tuberculosis H37Rv, although this
activity was reduced compared to natural teixobactin.96

Sansanmycins are members of the uridylpeptide family,
another antibiotic involved in inhibition of cell wall biosynthe-
sis.97,98 Uridylpeptide antibiotics have been shown to inhibit
translocase I (MraY) involved in peptidoglycan synthesis and the
target is predicted to be the same in M. tuberculosis.97,99 These
peptides were isolated from Streptomyces sp and sansanmycin A
and B were activity against drug susceptible and MDR strains of M.
tuberculosis.98,100 Simple semi-synthetic and biosynthetic mod-
ifications to the sansanmycin natural product has resulted in
derivatives with greater activity against virulent M. tuberculosis,
including MDR and XDR strains.101

AMPs-Inhibition of proteolysis
Cyclomarin A is a cyclic peptide from marine Streptomyces

CN3-982.102 It is active against M. tuberculosis both in culture and
intracellularly.103 Its target is caseinolytic protease C1 (ClpC1),
which is essential for mycobacterial survival.103,104 Total synthesis
of Cyclomarin A resulted in derivatives with activity against M.
tuberculosis and also against Plasmodium falciparum, highlighting
the broad-spectrum activity of certain AMPs.105 Lassomycin is an
AMP produced by the soil bacterium Lentzea kentuckyensis sp. and
was discovered through screening of extracts from soil actino-
mycetes against M. tuberculosis, and displays activity against MDR
and XDR strains.106 Generation of a lassomycin resistant strain of
M. tuberculosis led to the discovery of its target ClpC1.106 ClpC1 in
complex with ClpP1P2 is responsible for protein degradation and
maintaining cellular homeostasis.107,108 Interestingly, lassomycin
increases the ATPase activity of ClpC1, this may result in
decoupling of the ATPase and proteolysis activity of ClpC1 and
ClpP1P2 complex.106 Recent attempts at synthesising lassomycin
proved to be challenging with loss of activity against M.
tuberculosis as a result of incorrect conformation.109 However,
with advances in synthesis, lassomycin’s novel mode of action
together with high specificity against M. tuberculosis may result in
drug lead for in vivo studies.

Another cyclic peptide inhibitor of proteolysis in mycobacteria
which has advanced to in vivo studies in mice is ecumicin.110

Ecumicin also targetes ClpC1 and increases the activity of this
ATPase similar to lassomycin.110 Ecumicin was discovered by a high
throughput screen of Actinomycete extracts against M. tuberculosis
H37Rv and displayed good activity against drug-susceptible, MDR,
XDR and non-replicating M. tuberculosis.110 When delivered in
polymeric micelle formulation, ecumicin could reduce M. tubercu-
losis bacterial load in the lungs of infected mice.110 Ecumicin
however was not as effective as rifampicin in vivo, suggesting more
work is needed to improve its pharmacokinetics properties.

AMPs- Inhibiting DNA replication pathway
Griselimycin, produced by two strains of Streptomyces, is a

cyclic peptide antibiotic discovered in the 1960s. The natural
peptide has poor solubility, but more stable analogues of
grislimycin, particularly Cyclohexylgriselimycin, are active against
intracellular M. tuberculosis and drug-resistant strains.111 In both
an acute and chronic murine model of TB, treatment with
cyclohexylgriselimycin significantly reduced bacterial loads com-
pared to untreated mice.111 Griselimycin binds to DnaN, which is
the sliding clamp of DNA polymerase.111 This binding block the
interaction of DnaN with DNA polymerase and other elements
involved in DNA repair result in killing of mycobacteria.111

Other AMPs
Lariatins are a group of novel anti-mycobacterial peptides

originally isolated from Rhodococcus jostii K01-B0171. The topology
of the lariatins forms a threaded loop resembling a lasso and this
structure, along with post-translational modifications prevent
protease degradation of these peptides. Lariatin A is the most
promising lead currently in early-stage development (M. tubercu-
losis MIC = 0.39 mg/mL in vitro).112 A recent mutational study of
lariatin A found that amino acids Tyr6, Gly11, and Asn14 were
essential for anti-mycobacterial activity, while mutation of Val15,
Iso16 and Pro18 enhanced activity.113 Finally Trichoderins are a
new class of aminolipopeptides sourced from the fungal strain
Trichoderma sp. 05FI48, isolated from an unidentified marine
sponge. They were found to be highly active against M. smegmatis,
M. bovis and M. tuberculosis in vitro, with trichoderin A being most
promising (MIC = 0.1, 0.02 and 0.12 mg/mL respectively).114 One
interesting property of the trichoderins is that their potency under
hypoxic conditions remains unchanged.114 These peptides appear
to work through inhibiting ATP synthesis, although further work
needs to be done to confirm this.115 Trichoderins are in early stage
development as potential drug leads for TB.

Conclusions

Current control strategies have had little impact on TB control
and new therapies are urgently needed. Some strains of M.
tuberculosis are resistant to all existing antibiotics used for TB
treatment, highlighting the requirement for new drugs with novel
modes of action. The high rates of target-based molecule discovery
and high-throughput screening using synthetic compound librar-
ies has renewed interest in natural products as a source of diverse
bioactive molecules with anti-bacterial activity. As detailed in this
review, a number of natural products and ‘nature-inspired’
molecules show particular promise as anti-mycobacterial agents
with clinical potential. While natural products are a rich and
underutilised source of novel chemical scaffolds, the process of
isolating and purifying active compounds is labour-intensive and
time-consuming. Natural product screens rely on bioassay-guided
fractionation and require intensive structure-determination,
unlike screening of chemical compound libraries, which begins
with pure compounds of known structure.116 One other problem
lies with intellectual property rights, which are more difficult to
enforce and protect when the source of a novel drug grows freely in
the environment.117 Despite these issues, natural products remain
the most productive source of drug leads to this day, and no doubt
will continue to benefit researchers in drug discovery.6 The ability
to identify anti-bacterial compounds from previously uncultured
species of soil bacteria,95 metagenomic approaches to explore
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microbial diversity118 and the successful clinical application of
marine natural products provides hope that nature will deliver the
required starting points to control the TB epidemic.
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